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ecently reported that alcohol attenuates cocaine place preferences. Although the basis for this effect is unknown, alcohol may

ine reward by potentiating its aversive effects. To examine this possibility, these experiments assessed the effects of alcohol on

d taste aversions under conditions similar to those that resulted in attenuated place preferences. Specifically, Experiments 1 and 2

fects of alcohol (0.5 g/kg) on taste aversions induced by 20, 30 and 40 mg/kg cocaine. Experiment 3 examined the role of intertrial

effects of alcohol (0.5 g/kg) on cocaine (30 mg/kg) taste aversions. In Experiments 1 and 2, cocaine was effective at conditioning

ohol produced no measurable effect. Combining cocaine and alcohol produced no greater aversion than cocaine alone (and, in fact,

sions at the lowest dose of cocaine). In Experiment 3, varying the intertrial interval from 3 days (as in the case of Experiments 1 and

procedure identical to that in which alcohol attenuated cocaine place preferences) resulted in significant alcohol- and cocaine-

versions. Nonetheless, alcohol remained ineffective in potentiating cocaine aversions. Thus, under these conditions alcohol does not

ine’s aversiveness. These results were discussed in terms of their implication for the effects of alcohol on cocaine-induced place

urther, the effects of alcohol on place preferences conditioned by cocaine were discussed in relation to other assessments of the

hol on the affective properties of cocaine and the implications of these interactions for alcohol and cocaine co-use.

er Inc. All rights reserved.
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ion

onsumption commonly co-occurs with cocaine use

d Schafer, 1996; Caetano and Weisner, 1995;

1993; Grant and Harford, 1990; Heil et al., 2001;

., 1994). For instance, the prevalence of cocaine

o-use has been reported to be as high as 85% in

opulation (see Grant and Harford, 1990) and 62%

t-seeking population (Caetano and Schafer, 1996;

Weisner, 1995; Carroll et al., 1993; Heil et al.,

s et al., 1994). Although it remains unknown why

se this combination at such high rates, many have

suggested that alcohol possesses the ability to modulate the

affective (e.g., rewarding, aversive, anxiogenic) properties of

cocaine in a manner that increases the likelihood of their co-use

(see Farré et al., 1993; Knackstedt and Ettenberg, 2005; Lewis

and June, 1994; Magura and Rosenblum, 2000; McCance-Katz

et al., 1998; see also Moolten and Kornetsky, 1990).

Specifically, alcohol may either increase cocaine’s rewarding

properties (see Farré et al., 1993; Lewis and June, 1994;

McCance-Katz et al., 1998; see also Moolten and Kornetsky,

1990) and/or decrease its aversive (including anxiogenic)

effects (Knackstedt and Ettenberg, 2005; Magura and Rosen-

blum, 2000; McCance-Katz et al., 2005).

We have recently reported that alcohol modulates cocaine’s

rewarding properties within the place conditioning design (see

Busse et al., 2004; Busse and Riley, 2002). In particular, cocaine-

induced place preferences were significantly attenuated when

animals were conditioned with a combination of 0.5 g/kg alcohol

and 20, 30 or 40mg/kg cocaine (see Busse et al., 2004; Busse and

ee front matter D 2005 Elsevier Inc. All rights reserved.
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Riley, 2002). Although the bases for the attenuation of cocaine-

induced place preferences by alcohol remains unknown, e.g.,

whether such interactions reflect pharmacokinetic and/or phar-

macodynamic changes (see Horowitz et al., 1997; McCance-

Katz et al., 2005; Pan and Hedaya, 1999), it is possible that,

under some conditions, alcohol may increase both the rewarding

(see Farré et al., 1993; Lewis and June, 1994; McCance-Katz et

al., 1998; see also Moolten and Kornetsky, 1990) and aversive

effects of cocaine (Etkind et al., 1998; Grakalic and Riley, 2002).

Under these conditions, e.g., high doses of cocaine, the

potentiation of cocaine’s aversive effects may mask or outweigh

any potentiation that occurs to its rewarding effects. Interesting-

ly, Le Pen et al. (1998) offered a similar interpretation of their

findings that place preferences induced by 20 mg/kg cocaine

were attenuated by pretreatment with the dopamine uptake

inhibitor, GBR12783. Specifically, they attributed the attenua-

tion by GBR12783 to a masking of cocaine rewarding properties

by its potentiation of cocaine’s aversive effects.

Although it is possible that alcohol’s attenuation of cocaine-

induced place preferences is a function of an increase in

cocaine’s aversive effects, there are several difficulties with this

interpretation. For example, the attenuation of cocaine-induced

place preferences by alcohol (as well as by other drugs, see

above) may actually reflect a decrease in cocaine reward rather

than a potentiation of its aversive effects (see Gaiardi et al.,

1998). Such an effect would also be reflected in a change in the

ability of cocaine to induce a place preference. Further, much of

the evidence suggesting that alcohol potentiates the aversive

effects of cocaine (Etkind et al., 1998; Grakalic and Riley, 2002)

do so under different parametric conditions (e.g., route of

administration, sex and strain of subject, intertrial interval) than

those assessing the effects of alcohol on cocaine-induced place

preferences (Busse et al., 2004; Busse and Riley, 2002). These

parametric variables have all been shown to be significant

factors in aversion learning with cocaine (Elkins et al., 2003;

Ferrari et al., 1991; Glowa et al., 1994; Grabus et al., 2004;

Grigson and Freet, 2000; van Haaren and Hughes, 1990; see

Riley and Freeman, 2004). As such, it remains unknown

whether the conditions under which alcohol attenuates cocaine-

induced conditioned place preferences also potentiate cocaine’s

aversiveness. The present series of experiments tested this more

directly by examining the ability of alcohol to potentiate

cocaine-induced taste aversions under conditions similar to

those in which alcohol attenuates cocaine-induced place

preferences. Specifically, Experiments 1 and 2 examined the

effects of alcohol on conditioned taste aversions induced by a

variety of doses of cocaine in male Sprague–Dawley rats

injected with cocaine intraperitoneally. Experiment 3 examined

the contribution of intertrial interval in mediating the effects of

alcohol on cocaine-induced taste aversions.

2. General methods

2.1. Subjects

Male Sprague–Dawley rats (Harlan Sprague Dawley

Laboratories), weighing approximately 250 to 350 g at the

start of each experiment, were housed in separate hanging wire

cages in a room maintained on a 12 L:12 D light cycle (lights

on at 0800 hours) and at an ambient temperature of 23 -C.
Food and water were available ad libitum except where noted.

Animals were handled daily beginning 2 weeks prior to the

start of each experiment in order to limit any effects of

handling stress during conditioning and testing. Procedures

recommended by the Guide for the Care and Use of Laboratory

Animals (National Research Council, 1996), the Guidelines for

the Care and Use of Mammals in Neuroscience and Behavioral

Research (National Research Council, 2003) and the Institu-

tional Animal Care and Use Committee at American University

were followed at all times.

2.2. Drugs

Cocaine hydrochloride (generously supplied by the National

Institute on Drug Abuse) was dissolved in distilled water and

was injected intraperitoneally (IP) in a concentration of 10 mg/

ml (cocaine doses are expressed as the salt). Ethyl alcohol was

prepared in a 15% solution with distilled water (v /v) and was

also injected IP. Cocaine and alcohol were administered as

separate injections. Vehicle injections were distilled water and

were matched in number and volume to the injections of

cocaine and alcohol. Saccharin (0.1% sodium saccharin, Sigma

Chemical Co., St. Louis, MO) was prepared as a 1 g/l solution

in tap water.

2.3. Procedure

Phase I: Habituation. Following 23-h water deprivation,

subjects were given 20-min access to water (presented in

graduated 50-ml Nalgene tubes). This procedure was repeated

daily until all subjects were approaching and drinking from the

tube within 2 s of its presentation.

Phase II: Conditioning. On Day 1 of this phase, all subjects

were given 20-min access to a novel saccharin solution.

Immediately following saccharin access, subjects were rank

ordered on saccharin consumption and assigned to their

respective groups (i.e., either a vehicle, cocaine-only, alcohol-

only or cocaine/alcohol treatment group; group designation

differs for each experiment). All injections were given within

10 min of removal of the saccharin bottles.

The following 3 days (or 1 day, as in the case of Experiment

3) were water-recovery sessions wherein all subjects were given

20-min access to water. No injections were given following

water access on these days. This alternating procedure of

conditioning/water recovery was repeated until all subjects

received four complete cycles. On the day following the last

cycle, all subjects were given 20-min access to saccharin in a

Final Aversion Test. No injections followed this access.

2.4. Statistical analysis

Differences in absolute saccharin consumption were

assessed using a repeated measures ANOVA with the

between-group factor of Group and the within-subjects factor
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of Trial. All determinations of statistical significance were

made at p <.05. Tukey’s HSD post-hoc tests were used to

confirm any main effect of Group or Trial or any significant

Group�Trial interaction.

3. Experiment 1

Experiment 1 assessed the effects of alcohol (0.5 g/kg) on

taste aversions induced by 20 mg/kg cocaine. Specifically,

following habituation and initial saccharin presentation (Trial

1), 34 subjects were rank ordered on saccharin consumption

and assigned to receive either two injections of vehicle (Group

V–V; n =8), 20 mg/kg cocaine and vehicle (Group C–V;

n =8), 0.5 g/kg alcohol and vehicle (Group V–A; n=8) or the

cocaine/alcohol combination (Group C–A; n=10). The doses

of cocaine and alcohol were based on Busse and Riley (2002),

wherein place preferences induced by 20 mg/kg cocaine were

attenuated by 0.5 g/kg alcohol (but see Busse et al., 2004).

4. Results: experiment 1

The overall 4�5 repeated measures ANOVA indicated a

significant main effect for Group and Trial [F(3, 30)=3.285,

p =0.03; F(4, 120)=18.352, p <0.0001, respectively], as well as

a Group�Trial interaction [F(12, 120)=2.032, p =0.03; see

Fig. 1]. Post-hoc analysis established that overall saccharin

consumption was greater on Trials 2, 3 and 4 and on the Final

Aversion Test than it was on Trial 1 ( ps<0.05). Animals injected

with cocaine alone (i.e., Group C–V), however, consumed

significantly less saccharin across trials than animals in Groups

V–V, V–A and C–A ( ps<0.05). More specifically, subjects in

Group C–V consumed less saccharin than Group V–Von Trials

3 and 4 and Groups V–A and C–A on Trial 4. The fact that

subjects injected with cocaine alone drank less than those

injected with the cocaine/alcohol combination suggests that

alcohol attenuated the aversions induced by cocaine.

5. Discussion

As compared to vehicle controls (Group V–V), 20 mg/kg

cocaine (Group C–V) induced a weak aversion. Animals

conditioned with 0.5 g/kg alcohol alone (Group V–A), on the

other hand, displayed no measurable aversion, an effect

consistent with other work demonstrating that this dose of

alcohol does not induce aversions in either the place preference

or taste aversion design (see Busse et al., 2004; Busse and

Riley, 2002; Etkind et al., 1998; Fidler et al., 2004; Grakalic

and Riley, 2002). Interestingly, animals that underwent taste

aversion conditioning with the combination of 20 mg/kg

cocaine and 0.5 g/kg alcohol never differed from Group V–

V, but did differ from Group C–V on Trial 4, perhaps

suggestive of a weakening in cocaine’s ability to condition a

taste aversion by alcohol.

It is quite surprising that, in the present context, alcohol

appeared to weaken cocaine’s aversiveness, especially since

most evidence, to date, suggests that alcohol potentiates the

aversive effects of cocaine within this design (Etkind et al.,

1998; Grakalic and Riley, 2002). Still, such an effect is

consistent with others examining the interaction between

alcohol and cocaine’s anxiogenic properties (see Knackstedt

and Ettenberg, 2005; Magura and Rosenblum, 2000). In

particular, Knackstedt and Ettenberg (2005) trained animals

with intravenous (IV) cocaine to run to a goal box at the end of

a runway apparatus. Interestingly, animals displayed ap-

proach–avoidance behaviors (a suggested index of anxiety)

before entering the goal box. The administration of alcohol

after training sessions, however, reduced the number of retreats

animals displayed on these tests. Such an effect was interpreted

as a weakening of the negative consequences of cocaine by

alcohol (see also McCance-Katz et al., 2005). If this is the case,

then it is possible that the weakening of cocaine-induced taste

aversions by alcohol is truly a reflection of a decrease in

cocaine’s aversiveness.

A second interpretation of these data, however, is that alcohol

decreased the rewarding properties of cocaine. In fact, it has

recently been postulated that the taste ‘‘aversion’’ design reflects

changes in the rewarding properties of drugs rather than their

aversive effects. In particular, Grigson and her coworkers have

suggested that decreases in fluid consumption that occur when

saccharin is paired with cocaine reflect a devaluation of the

saccharin solution in comparison (or an anticipation of) cocaine

(see Grigson and Twining, 2002; Grigson and Freet, 2000). That

is, animals lower their consumption of the rewarding saccharin

solution in anticipation of the subsequent rewarding cocaine

experience. If this were the case, then alcohol’s attenuation of

cocaine-induced taste aversions would be more reflective of a

decrease in the rewarding properties of cocaine then a decrease

in its aversiveness. As noted, such an interpretation would be

consistent with the place conditioning work presented by Busse

and Riley (2002) and Busse et al. (2004).

Independent of these suggested bases for the results of

Experiment 1, it is clear that the conditions under which these

animals were tested did not support a potentiation in cocaine-

induced taste aversions by alcohol. Although it is not known

why alcohol did not potentiate cocaine-induced aversions, it is

possible that the aversive effects of 20 mg/kg cocaine were

weak and not subject to potentiation (for a dose–response

comparison for cocaine CTAs, see Busse et al., 2005b; Ferrari
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Fig. 1. Mean (TSEM) absolute saccharin consumption in ml across trials for

animals conditioned with vehicle (Group V–V), 0.5 g/kg alcohol (Group V–A),

20mg/kg cocaine (GroupC–V) or the cocaine/alcohol combination (GroupC–A).
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et al., 1991). Interestingly, prior work from this lab and others

has reported that 20 mg/kg cocaine when administered

intraperitoneally produces a weak aversion (see also Fig. 1).

It is important to note in this context that although Busse and

Riley (2002) reported that 0.5 g/kg alcohol attenuated place

preferences conditioned by 20 mg/kg cocaine, this effect was

not evident in a subsequent experiment by this group (see

Busse et al., 2004). In fact, Busse et al. (2004) only found an

attenuation in cocaine-induced place preferences when com-

bining alcohol with higher cocaine doses (i.e., 30 and 40 mg/

kg). As such, under these conditions, 20 mg/kg cocaine may be

near threshold for detecting any potentiation in its aversiveness

by alcohol.

Given this possibility, the purpose of Experiment 2 was to

assess the effects of 0.5 g/kg alcohol on taste aversions induced

by 30 and 40 mg/kg cocaine. Specifically, following habitu-

ation and initial saccharin exposure (Trial 1), 48 subjects were

rank ordered on saccharin consumption and assigned to receive

either two injections of vehicle (Group V–V; n =8), 20 or 30

mg/kg cocaine and vehicle (Groups C30–V; n =8; C40–V;

n =8), 0.5 g/kg alcohol and vehicle (Group V–A; n =8) or the

respective cocaine/alcohol combinations (Groups C30–A;

n =8; C40–A; n =8). In addition to being well above the

threshold for inducing taste aversions (see Busse et al., 2005b;

Ferrari et al., 1991; Grakalic and Riley, 2002), these doses of

cocaine induce place preferences that are robustly attenuated by

0.5 g/kg alcohol (see Busse et al., 2004).

6. Results: experiment 2

The overall 6�5 repeated measures ANOVA indicated a

significant main effect for Group and Trial [F(5, 35)=6.891,

p =0.0001; F(4, 140)=24.948, p <0.0001, respectively], as

well as a significant Group � Trial interaction [F(20,

140)=5.351, p =0.03; see Fig. 2]. Tukey’s HSD post-hoc

analyses established that overall saccharin consumption was

less on Trials 2, 3, 4 and on the Final Aversion Test, as

compared to Trial 1 ( ps<0.05). Similar to Experiment 1,

alcohol, when administered alone, produced no decrease in

saccharin consumption compared to vehicle ( p <0.05). Ani-

mals administered cocaine, alone or in combination with

alcohol (Groups C30–V, C40–V, C30–A and C40–A),

displayed a significant reduction in saccharin intake across

trials compared to subjects administered vehicle (Group V–V)

or alcohol alone (Group V–A; ps<0.05). There were no

differences in overall saccharin consumption between animals

administered cocaine alone (Groups C30–V and C40–V) and

their respective cocaine/alcohol counterparts (Groups C30–A

and C40–A).

In the context of the Group�Trial interaction, Group C40–

A significantly reduced saccharin intake by Trial 2, as

compared to vehicle controls (Group V–V) and animals

conditioned with alcohol alone (Group V–A; ps<0.05; see

Fig. 2). By Trial 3, all cocaine and cocaine/alcohol groups

reduced saccharin consumption relative to Groups V–V and

V–A ( ps<0.05). However, these groups did not differ from

each other. On Trial 4, saccharin intake in Groups C40–V and

C40–A remained significantly reduced below that in animals

in Groups V–V and V–A ( ps <0.05), while all other

comparisons failed to reach statistical significance. By the

Final Aversion Test, all cocaine and cocaine/alcohol groups

displayed a significant reduction in saccharin intake below that

of animals administered alcohol alone ( ps<0.05), while only

Groups C40–V and C40–A differed from vehicle controls

( ps<0.05). Thus, if any potentiation occurred with the cocaine/

alcohol combination, it was weak and limited to Trial 2.

7. Discussion

Compared to vehicle controls (Group V–V), subjects

injected with 30 and 40 mg/kg cocaine (Groups C30–V and

C40–V, respectively) displayed a modest decrease in saccharin

consumption, an effect consistent with other reports on the

aversiveness of cocaine at these doses and by this route (Busse et

al., 2005b). Similar to Experiment 1, however, no decrease was

evident in animals administered 0.5 g/kg alcohol (Group V–A).

Interestingly, as compared to their cocaine-only counterparts, the

combinations of cocaine and alcohol (Groups C30–A and C40–

A) produced similar decreases in saccharin consumption across

most trials, although a faster acquisition of aversions was noted

in Group C40–A. That this difference was only evident on Trial

2 suggests that if any potentiation occurred, it was weak and

short-lived. Thus, the results of Experiment 2 present no

significant evidence that, under these experimental conditions,

alcohol potentiates the aversive properties of cocaine.

One additional variable that may impact the likelihood of

alcohol potentiating the aversive effects of cocaine is the

interval between successive conditioning trials. Specifically, in

Experiments 1 and 2 animals were given access to the

saccharin solution and injected with a drug (or drug combina-

tion) once every 4 days. Although this procedure is common in

work on conditioned aversion learning (see Riley and Freeman,

2004; see also www.CTAlearning.com) and similar to the

procedure used in the initial demonstrations of alcohol’s

potentiation of cocaine-induced taste aversions (see Etkind et

al., 1998; Grakalic and Riley, 2002), it is different than that

which was employed by Busse and Riley (2002) and Busse et

al. (2004) in their assessment of the effects of alcohol on
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Fig. 2. Mean (TSEM) absolute saccharin consumption in ml across trials for

animals conditioned with vehicle (Group V–V), 0.5 g/kg alcohol (Group V–

A), 30 mg/kg cocaine (Group C30–V), 40 mg/kg cocaine (Group C40–V) or

the respective cocaine/alcohol combination (Groups C30–A and C40–A).
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cocaine-induced place preferences. In these latter assessments,

the pairing of the place conditioning chamber with the drug (or

drug combination) was given every other day. Such a

difference may be important given that the aversive effects of

drugs have been reported to vary with this parameter (Domjan,

1980). The purpose of Experiment 3, therefore, was to

investigate the effects of 0.5 g/kg alcohol on taste aversions

induced by 30 mg/kg cocaine when the pairing of saccharin

and cocaine occurred every other day. Specifically, following

habituation and initial saccharin exposure, 40 subjects were

rank ordered on initial saccharin consumption and assigned to

receive either two injections of the vehicle (Group V–V; n =8),

30 mg/kg cocaine and vehicle (Groups C–V; n =12), 0.5 g/kg

alcohol and vehicle (Group V–A; n =8) or the cocaine/alcohol

combination (Groups C–A; n =12). Conditioning occurred

every other day for a total of four conditioning trials.

8. Results: experiment 3

The overall 4�5 repeated measures ANOVA indicated a

significant main effect for Group and Trial [F(3, 36)=12.533,

p <0.0001; F(4, 144)=25.493, p<0.0001, respectively], as

well as a significant Group � Trial interaction [F(12,

144)=2.032, p< 0.0001; see Fig. 3]. Specifically, although

post-hoc analysis established that overall saccharin consump-

tion was greater on Trial 2 than it was on Trial 1 ( p <0.05),

animals consumed less saccharin on the Final Aversion Test

than they did on Trial 2 ( p <0.05). In the context of the main

effect for Group, post-hoc analyses confirmed that animals

conditioned with 30 mg/kg cocaine (Group C–V), 0.5 g/kg

alcohol (Group V–A) and the cocaine/alcohol combination

(Group C–A) consumed less overall saccharin than vehicle

controls (Group V–V; ps<0.05). In addition, Group C–A also

consumed significantly less saccharin than animals in Group

V–A ( p <0.05).

Upon examination of the Group�Trial interaction, post-hoc

analysis indicated that animals in Groups C–V and C–A

consumed less saccharin than Group V–Von Trials 2, 3 and 4

( ps< 0.05). In addition Group V–A drank less saccharin than

Group V–V on Trial 3 and 4 and on the Final Aversion Test,

but more than Group C–Vand C–A on Trial 4 and on the Final

Aversion Test ( ps<0.05). Groups C–Vand C–A did not differ

in saccharin consumption at any point in conditioning. Thus,

these data indicate that the combination of cocaine and alcohol

did not produce greater aversions than cocaine alone, despite

alcohol (i.e., 0.5 g/kg) producing an aversion on its own.

9. Discussion

Compared to vehicle controls (Group V–V), animals

injected with 30 mg/kg cocaine (Group C–V) displayed a

modest decrease in saccharin consumption by Trial 2. This

reduction was significantly different than that which occurred

in animals conditioned with alcohol alone (Group V–A).

Interestingly, and unlike the previous experiments, animals

administered 0.5 g/kg alcohol (Group V–A) every other day

also displayed a reduction in saccharin consumption as

compared to Group V–V (an effect likely due to the change

in the intertrial interval during conditioning; see Domjan,

1980). Similar to animals conditioned with cocaine alone

(Group C–V), animals injected with the drug combination

(Group C–A) displayed a significant reduction in saccharin

consumption from vehicle controls (Group V–V). This

reduction, however, never differed from that in animals

administered cocaine alone. It is important to note that initial

saccharin consumption on Trial 1 was low, relative to

Experiments 1 and 2. It is, therefore, possible that no

potentiation was evident because subsequent reductions in

saccharin consumption were not possible (due to the initially

low level of consumption at baseline). Following the final

aversion test, all subjects were given four extinction trials in

which saccharin was given with no subsequent injections.

There was no difference in the rate and degree of extinction

between animals given cocaine and those given the cocaine/

alcohol combination (data not shown). Thus, the failure to see

any difference between the cocaine and cocaine/alcohol groups

was not likely a function of an inability to see any differences

due to the ‘‘basement’’ effects during acquisition. Thus, despite

that fact that alcohol produced aversions on its own, no

potentiation in the aversiveness of cocaine was evident when

animals underwent aversion conditioning with the combination

of cocaine and alcohol every other day.

10. General discussion

Busse and his colleagues have recently suggested that

alcohol’s ability to modulate cocaine place preferences may be

due to an alteration in the relative (and dose-dependent)

balance of cocaine reward and aversion (Busse et al., 2004;

Busse and Riley, 2002). Specifically, they suggest that when

alcohol is co-administered with doses of cocaine high enough

to support aversion learning (see Busse et al., 2005b; Etkind

et al., 1998; Ferrari et al., 1991; Grakalic and Riley, 2002),

increases in the aversive effects of cocaine mask or outweigh

any change that occur to cocaine reward. The present

experiments attempted to more directly examine this possibility

by assessing the effects of alcohol on cocaine’s aversive effects

under conditions comparable to those in which the attenuation
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Fig. 3. Mean (TSEM) absolute saccharin consumption in ml across trials (with

a 1 day intertrial interval) for animals conditioned with vehicle (Group V–V),

0.5 g/kg alcohol (Group V–A), 30 mg/kg cocaine (Group C–V) or the cocaine/

alcohol combination (Group C–A).
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was reported (i.e., male Sprague–Dawley rats injected intra-

peritoneally every other day) and in a design sensitive to the

aversive effects of drugs, i.e., the CTA design (Hunt and Amit,

1987; Riley and Tuck, 1985).

Overall, the data from Experiments 1, 2 and 3 indicate that

alcohol did not potentiate cocaine-induced taste aversions. This

lack of potentiation was evident across a range of cocaine doses

(20, 30 and 40 mg/kg) and under several different schedules of

injections (i.e., every fourth day and every other day), although

this latter condition did support the emergence of alcohol’s

aversive effects. The failure of alcohol to potentiate cocaine

aversions is surprising given previous reports indicating such

potentiation (Etkind et al., 1998; Grakalic and Riley, 2002).

The differences between the results of the present series of

studies and those previously reporting alcohol potentiation of

cocaine aversions is likely due to parametric differences, e.g.,

route of administration and strain and sex of the subject, factors

all of which have been shown to be important in mediating the

aversive effects of cocaine (see Elkins et al., 2003; Ferrari et

al., 1991; Glowa et al., 1994; Grabus et al., 2004; Grigson and

Freet, 2000; van Haaren and Hughes, 1990).

In the context of the place conditioning work by Busse and

Riley (2002; see also Busse et al. 2004), the results from these

experiments do little to support the hypothesis that the

attenuation in cocaine place preferences by alcohol is a result

of its potentiation of the aversiveness of cocaine. Instead of

increasing cocaine aversiveness and, in effect, outweighing any

changes that occur to cocaine reward, alcohol may be directly

reducing the rewarding effects of cocaine (independent of any

specific changes in cocaine’s aversive effects). Although

untested in this report, there are several mechanisms that may

account for alcohol’s ability to reduce cocaine reward. For

example, it has been reported that acute alcohol not only

attenuates the increase in dopamine levels that occurs in the

striatum following cocaine injections, but cocaine-induced

motor activity as well (Dewey et al., 1997). This effect was

attributed to GABAergic inhibition of dopamine activity.

Similarly, other compounds that increase GABA levels reduce

both the biochemical and behavioral effects of cocaine.

Specifically, gamma vinyl-GABA (GVG, Vigabatrin), an

irreversible inhibitor of GABA transaminase (an enzyme

involved in the metabolism of GABA) reduces the cocaine-

induced increase in dopamine levels in the nucleus accumbens

in rats (Ashby et al., 1999; Gerasimov and Dewey, 1999;

Morgan and Dewey, 1998) and primates (Dewey et al., 1998).

Further, this compound blocks cocaine self-administration

(Kushner et al., 1999) and cocaine-induced place preferences

in the rat (Dewey et al., 1998). A similar effect on cocaine-

induced place preferences was obtained by co-administering

diazepam with cocaine (Meririnne et al., 1999). Thus, it

possible that alcohol attenuates cocaine-induced place prefer-

ences by attenuating cocaine reward, an effect of decreasing

dopamine levels, rather than by increasing its aversiveness.

A second possibility is that, in addition to affecting

dopaminergic output via GABA, alcohol may also affect the

ability of cocaine to condition a place preference by altering

glutamate activity in the mesolimbic and mesocortical path-

ways. In fact, alcohol has been demonstrated to act as a

glutamate antagonist at the NMDA receptor (Bienkowski et al.,

1997; Krystal et al., 2003; Nagy, 2004; for a review see Kumari

and Ticku, 2000). Such reductions in glutamate activity may

inhibit cocaine’s ability to condition a place preference (Harris

and Aston-Jones, 2003; Nakagawa et al., 2005). Specifically,

Harris and Aston-Jones (2003) demonstrated that microinjec-

tions of AP5 plus CNQX, glutamate antagonists, into the VTA

blocked the development of cocaine-induced place preferences.

A similar effect was reported by Nakagawa et al. (2005)

wherein (R)-(�)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153),

a glutamate transporter activator that reduces glutamate activity,

attenuated the induction of cocaine place preferences. Thus,

alcohol may attenuate the rewarding effects of cocaine by

inhibiting glutamate activity.

The current data suggest that alcohol’s attenuating effects on

cocaine-induced place preferences are not a function of any

changes in cocaine’s aversiveness. It should be noted, however,

that this analysis makes several assumptions. First, it assumes

that the aversiveness of cocaine is comparably measured or

detected in the taste and place aversion designs. There are

several lines of evidence that suggest that this may not

necessarily be the case. In fact, although both preparations

are sensitive to the rewarding and aversive properties of drugs

(Hunt and Amit, 1987; Riley and Simpson, 2001; Tzschentke,

1998; for a bibliography on place conditioning, see Schechter

and Calcagnetti, 1993, 1998; for a bibliography on CTA, see

www.CTAlearning.com), manipulations that result in a modu-

lation in place conditioning do not necessarily produce parallel

changes in taste aversion learning. For example, via lesioning

of the medial prefrontal cortex, Isaac et al. (1989) converted

cocaine-induced place preferences to place aversions with no

corresponding change in cocaine-induced taste aversions.

Similarly, Laviolette et al. (2002) reported that nicotine place

preferences became place aversions after a lesion to the

tegmental pedunculopontine nuclei, again with no change in

nicotine-induced CTAs. Thus, the neural mechanisms mediat-

ing the affective properties of drugs in the place conditioning

design may have little to no overlap with the neural

mechanisms involved in CTA learning. Assessments of the

changes in the aversiveness of cocaine in the place condition-

ing design may be more insightful to understanding the role of

such changes in the attenuation of cocaine-induced place

references by alcohol (see Cunningham et al., 2001).

A second assumption is that the conditioned taste aversion

design is a sensitive and valid measure of drug aversion. As

previously noted, it has recently been suggested that this design

may instead be an index of the rewarding properties of drugs

rather than a drug’s aversiveness (see Grigson and Twining,

2002; Grigson and Freet, 2000; for a detailed discussion, see

Foynes and Riley, 2004). That is, animals may avoid

consuming a rewarding saccharin solution in anticipation of

cocaine (anticipatory contrast). Therefore, if the attenuation in

cocaine place preferences by alcohol presented by Busse and

his colleagues (Busse and Riley, 2002; Busse et al., 2004) were

a function of changes in the aversiveness of cocaine by alcohol,

but the taste aversion design were more sensitive to changes in
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drug reward, its use may not be appropriate in the context of

this analysis.

Independent of these interpretational issues, the bases for

the high rates of cocaine and alcohol co-use remain to be

determined (see Introduction). Based on the place conditioning

work of Busse and Riley (2002), the rewarding properties of

cocaine appear to be weakened when this drug is combined

with alcohol. Yet, others have shown that alcohol can alter the

affective (rewarding and aversive) properties of cocaine in a

manner that would predict an increased co-use of these

compounds. For instance, Knackstedt and Ettenberg (2005)

demonstrated a decrease in the anxiogenic properties of

cocaine by alcohol (see also McCance-Katz et al., 2005).

Further, others have shown that alcohol increases the rewarding

properties of cocaine in both humans (see Farré et al., 1993;

McCance-Katz et al., 1998) and animals (Lewis and June,

1994). Thus, what remains to be determined is why alcohol

attenuates cocaine place preferences, an index of drug reward,

and if (and under what conditions) this attenuation would be

abated and/or reversed. Interestingly, it has been demonstrated

that history with alcohol weakens alcohol’s ability to potentiate

cocaine-induced taste aversions (Grakalic and Riley, 2002). If

the place conditioning design is a sensitive measure of both the

rewarding and aversive properties of drugs (see Tzschentke,

1998; for a bibliography, see Schechter and Calcagnetti, 1993,

1998), and alcohol history affects one (or both) of these

properties, then it is possible that the interaction between

cocaine and alcohol within the place conditioning design

would be affected by such a history (see Busse et al., 2005a).

Under such conditions, alcohol may potentiate cocaine’s

rewarding effects.

In conclusion, under conditions similar to those employed

by Busse and Riley (2002) and Busse et al. (2004), taste

aversions induced by cocaine were not potentiated by alcohol.

Although the basis for this failure and its implications for

changes in apparent cocaine reward remain unknown, it is clear

that continued investigation is needed to understand how, and

under what conditions, alcohol alters the abuse liability of

cocaine.
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